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Multiplicative partition functions for reverse plane
partitions derived from an integrable dynamical

system
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Graduate School of Informatics, Kyoto University, Japan

Abstract. In this paper we clarify a close connection between reverse plane partitions
and an integrable dynamical system called the discrete two-dimensional (2D) Toda
molecule. We show that a multiplicative partition function for reverse plane parti-
tions of arbitrary shape with bounded parts can be obtained from each non-vanishing
solution to the discrete 2D Toda molecule. As an example we derive a partition func-
tion which generalizes MacMahon’s triple product formula and Gansner’s multi-trace
generating function from a specific solution to the discrete 2D Toda molecule.
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1 Introduction

Let λ be an (integer) partition or the corresponding Young diagram. A reverse plane
partition of shape λ is a filling of cells in λ with nonnegative integers such that all rows
and columns are weakly increasing. One of the most prominent results in the study of
(reverse) plane partitions is the discovery of multiplicative generating functions, namely
those which can be nicely factored.

The first discovery is due to MacMahon [8] who proved the product formula

∑
π

q|π| =
r

∏
i=1

c

∏
j=1

n

∏
k=1

1− qi+j+k−1

1− qi+j+k−2 (1.1)

for plane partitions π of r × c rectangular shape with parts at most n. MacMahon’s
study on plane partitions was revived by Stanley. Among his vast amounts of results
a multiplicative generating function involving the trace statistic is of great importance
[11]. Gansner [1] later refined Stanley’s trace generating function into the multi-trace
one
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where RPP(λ) denotes the set of reverse plane partitions π = (πi,j) of shape λ with r
rows and c columns, tr`(π) = ∑−i+j=` πi,j, the `-trace, and λ′ the shape conjugate with
λ. Okada [10] further generalizes (1.2) based on Macdonald symmetric polynomials and
Schur processes. Note that plane partitions considered in (1.1) are those with bounded
parts but reverse plane partitions in (1.2) are those with unbounded parts.

In this paper we clarify a close connection between reverse plane partitions and an
integrable dynamical system, called the discrete two-dimensional (2D) Toda molecule [3]. We
show that a multiplicative partition function for reverse plane partitions can be derived
from each non-vanishing solution to the dynamical system (Theorem 6 in Section 4)
where reverse plane partitions considered are those of arbitrary shape with bounded
parts. As a concrete example we derive a partition function which generalizes both
MacMahon’s product formula (1.1) and Gansner’s multi-trace generating function (1.2)
from a specific solution (Theorem 7 in Section 5). The key idea comes from a com-
binatorial interpretation of the discrete 2D Toda molecule in terms of non-intersecting
lattice paths (Section 3). Note that Viennot [12] takes a similar approach to count non-
intersecting Dyck paths by using the quotient-difference (qd) algorithm for Padé approx-
imation.

We remark that the author showed in his previous papers [4, 5] a similar result
for plane partitions of rectangular shape by means of biorthogonal polynomials. The
discrete 2D Toda molecule is equivalent to the adjacent relations among biorthogonal
polynomials used in [4, 5], see also, e.g., [9]. The technique developed in this paper has
the same ability as the previous one by biorthogonal polynomials, though how to deal
with the case of non-rectangular shape is not discussed in [4, 5].

2 Solutions to the discrete 2D Toda molecule

We show a brief review on the integrable dynamical system discussed throughout the
paper. The discrete two-dimensional (2D) Toda molecule is one of the most typical
integrable dynamical systems that was introduced as a discrete analogue of the Toda
lattice [3]. The evolution of the discrete 2D Toda molecule is described by the difference
equations

a(s,t+1)
n + b(s+1,t)

n = a(s,t)
n + b(s,t)

n+1, (2.1a)

a(s,t+1)
n b(s+1,t)

n+1 = a(s,t)
n+1b(s,t)

n+1, (2.1b)

(s, t) ∈ Z2, n ∈ Z≥0, b(s,t)
0 = 0. (2.1c)
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Through a dependent variable transformation

a(s,t)
n =

τ
(s+1,t)
n+1 τ

(s,t)
n

τ
(s+1,t)
n τ

(s,t)
n+1

, b(s,t)
n =

τ
(s,t+1)
n−1 τ

(s,t)
n+1

τ
(s,t+1)
n τ

(s,t)
n

(2.2)

with τ
(s,t)
0 = 1 we obtain from (2.1)

τ
(s+1,t+1)
n−1 τ

(s,t)
n+1 − τ

(s+1,t+1)
n τ

(s,t)
n + τ

(s+1,t)
n τ

(s,t+1)
n = 0, (2.3a)

(s, t) ∈ Z2, n ∈ Z≥1, τ
(s,t)
0 = 1, (2.3b)

that is the so-called bilinear form of the discrete 2D Toda molecule.
The determinant

τ
(s,t)
n = det

0≤i,j<n
( fs+i,t+j) =

∣∣∣∣∣∣∣∣∣∣∣∣

fs,t · · · fs,t+j · · · fs,t+n−1
...

...
...

fs+i,t · · · fs+i,t+j · · · fs+i,t+n−1
...

...
...

fs+n−1,t · · · fs+n−1,t+j · · · fs+n−1,t+n−1

∣∣∣∣∣∣∣∣∣∣∣∣
(2.4)

solves the bilinear form (2.3) where f = fi,j is an arbitrary function defined on Z2.

Therefore a(s,t)
n , b(s,t)

n given by (2.2) with (2.4) solves the discrete 2D Toda molecule (2.1)
if the determinant does not vanish. Conversely there exists a function f on Z2 which
satisfies (2.2) with (2.4) for every solution a(s,t)

n 6= 0, b(s,t)
n 6= 0 to (2.1). We have the

following correspondence between a(s,t)
n , b(s,t)

n and f .

Proposition 1. For each solution a(s,t)
n 6= 0, b(s,t)

n 6= 0 to the discrete 2D Toda molecule (2.1)
there exists a function f = fi,j on Z2 which gives the same solution through (2.2) with (2.4).
Moreover such an f is uniquely determined up to the transformation fi,j → ϕj fi,j by any non-
vanishing function ϕ = ϕj on Z.

Giving a non-vanishing solution a(s,t)
n , b(s,t)

n to the discrete 2D Toda molecule is thus
essentially equivalent to giving a function f on Z2.

3 Lattice path combinatorics

In this paper we use a matrix-like coordinate to draw a square lattice Z2 where the
nearest neighbors (i + 1, j), (i − 1, j), (i, j + 1) and (i, j − 1) of a lattice point (i, j) are
located on the south, north, east and west of (i, j) respectively. We call a subset L of Z2

regular such that (i) if (i, j) ∈ L then (i + k, j + k) ∈ L for all k ≥ 1; (ii) if (i, j) ∈ L then
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x
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Figure 1: A regular subset L of Z2 and a lattice path. North and west boundary points
are marked blue and red respectively. Convex corners are those marked in both the
colors.

(i− k, j) 6∈ L and (i, j− k) 6∈ L for some k ≥ 1. We call a point (i, j) ∈ L a north boundary
point if (i − 1, j) 6∈ L; similarly a west boundary point if (i, j − 1) 6∈ L. We call a point
(i, j) ∈ L a convex corner if (i, j) is a north and west boundary point. The interest is in
lattice paths on a regular subset L of Z2 consisting of north and east steps. See Figure 1
for an example.

We think of a regular subset L of Z2 as a graph with vertices L and edges connecting
nearest neighbors. We determine the weights of edges by using a solution a(s,t)

n , b(s,t)
n to

the discrete 2D Toda molecule (2.1) as follows.

(a) The vertical edge with north endpoint at (i, j) has the weight a(i−n,j−n)
n if (i− n, j− n)

is a west boundary point of L.

(b) The vertical edge with south endpoint at (i, j) has the weight b(i−n,j−n)
n if (i− n, j− n)

is a north boundary point of L.

(c) Every horizontal edge has the unit weight 1.

See Figure 2 for an example. We define the weight w(L; a, b; P) of a lattice path P on L to
be the product of the weights of all the edges passed by P. We conventionally consider
empty paths P with no steps for which w(L; a, b; P) = 1. For (i, j) ∈ L and (k, `) ∈ L we
define

g(L; a, b; i, j; k, `) = ∑
P

w(L; a, b; P) (3.1)

where the sum ranges over all the lattice paths on L going from (i, j) to (k, `).
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Figure 2: The weights of edges.

Let x(j) denote the x-coordinate (or the vertical —) of the north boundary point
of L with y-coordinate (or horizontal —) equal to j; let y(i) the y-coordinate of the
west boundary point of L with x-coordinate equal to i. The following theorem gives a
combinatorial interpretation of the discrete 2D Toda molecule and refines Proposition 1.

Theorem 2. Let a(s,t)
n 6= 0, b(s,t)

n 6= 0 be a solution to the discrete 2D Toda molecule (2.1).
Assume that a function f = fi,j on Z2 gives the same solution through (2.2) with (2.4). Let L be
a regular subset of Z2. Then for any (i, j) ∈ L,

fi,j

fx(j),j
= g(L; a, b; i, y(i); x(j), j). (3.2)

In order to prove the theorem we use the following lemma.

Lemma 3. Let L be a regular subset of Z2 with a convex corner (s, t) ∈ L. Let L′ denote the
regular subset of Z2 obtained from L by deleting the convex corner (s, t). Then for any (i, j) and
(k, `) in L′ with i− j 6= s− t and k− ` 6= s− t,

g(L; a, b; i, j; k, `) = g(L′; a, b; i, j; k, `). (3.3)

Proof. The difference between L and L′ is only in the existence and the absence of the
convex corner (s, t), and the weights of vertical edges between the two diagonal lines
d− : y− x = t− s− 1 and d+ : y− x = t− s + 1. (The vertical edges between d− and d+
are weighted by a(s,t)

n , b(s,t)
n on L and by a(s,t+1)

n , b(s+1,t)
n on L′.) Assume that i− j 6= s− t
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L and L′

d− d+

1 1

Case (i)
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1

1
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n

Case (ii) [n ≥ 1]
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Case (ii) [n = 0]

L

a(s,t)
n

b(s,t)
n

L′

b(s+1,t)
n

a(s,t+1)
n−1

Case (iii)

Figure 3: Proof of Lemma 3.

and k− ` 6= s− t meaning that (i, j) and (k, `) is outside the region between d− and d+.
(Those may be on d±.) If both (i, j) and (k, `) are either in the south of d− or in the north
of d+ then the identity (3.3) clearly holds since lattice paths going from (i, j) to (k, `)
never enter the region between d− and d+. In the rest of the proof we thus assume that
(i, j) is in the south of d− and (k, `) in the north of d+.

Each lattice path P going from (i, j) to (k, `) is uniquely divided into three subpaths:
P− from (i, j) to d−, Q of two steps between d− and d+ and P+ from d+ to (k, `). Obvi-
ously w(P±) = w′(P±) where w and w′ are abbreviations of w(L; a, b; ·) and w(L′; a, b; ·)
respectively. The proof of (3.3) thus amounts to showing that g(i, j; k, `) = g′(i, j; k, `)
for each (i, j) on d− and (k, `) on d+ where g and g′ are abbreviations of g(L; a, b; ·)
and g(L′; a, b; ·) respectively. Since Q is of two steps we have only three cases: (i) (i, j) =
(s+ n, t+ n− 1) and (k, `) = (s+ n, t+ n+ 1) for some n ≥ 1; (ii) (i, j) = (s+ n+ 1, t+ n)
and (k, `) = (s + n, t + n + 1) for some n ≥ 0; (iii) (i, j) = (s + n + 1, t + n) and
(k, `) = (s + n− 1, t + n) for some n ≥ 1. See Figure 3.

Case (i): The unique lattice path going from (i, j) = (s + n, t + n− 1) to (k, `) = (s +
n, t + n + 1) of two east steps is both on L and on L′. Thus g(i, j; k, `) = g′(i, j; k, `) = 1.

Case (ii): There are two lattice paths going from (i, j) = (s + n + 1, t + n) to (k, `) =
(s + n, t + n + 1) one of which is Q1 going north then east, the other is Q2 going east
then north. If n ≥ 1 then Q1 and Q2 are both on L and on L′, and w(Q1) = a(s,t)

n ,
w(Q2) = b(s,t)

n+1, w′(Q1) = a(s,t+1)
n and w′(Q2) = b(s+1,t)

n . Thus g(i, j; k, `) = a(s,t)
n + b(s,t)

n+1 =

a(s,t+1)
n + b(s+1,t)

n = g′(i, j; k, `) because of (2.1a). If n = 0 then Q1 and Q2 are on L while
only Q2 on L′, and w(Q1) = a(s,t)

0 , w(Q2) = b(s,t)
1 and w′(Q1) = a(s,t+1)

0 . (Q1 is not
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on L′ since Q1 passes through (s, t) 6∈ L′.) Thus g(i, j; k, `) = a(s,t)
0 + b(s,t)

1 = a(s,t+1)
0 =

g′(i, j; k, `) because of (2.1a) with (2.1c).
Case (iii): The unique lattice path going from (i, j) = (s + n + 1, t + n) to (k, `) =

(s+ n− 1, t+ n) of two north steps is both on L and on L′. The weight of the lattice path
is a(s,t)

n b(s,t)
n on L and a(s,t+1)

n−1 b(s+1,t)
n on L′. Thus g(i, j; k, `) = a(s,t)

n b(s,t)
n = a(s,t+1)

n−1 b(s+1,t)
n =

g′(i, j; k, `) because of (2.1b).

Proof of Theorem 2. Let L′ denote the regular subset of Z2 defined by L′ = L \ {(s, t) ∈
L; s < i and t < j}. From Lemma 3 then g(L; a, b; i, y(i); x(j), j) = g(L′; a, b; i, y(i); x(j), j)
because we can obtain L′ from L by deleting convex corners iteratively. A lattice path
going from (i, y(i)) to (x(j), j) on L′ is unique because such a lattice path cannot turn
north until (i, j) and cannot turn east from (i, j). The weight of the unique lattice path
on L′ implies that g(L′; a, b; i, y(i); x(j), j) = ∏i−1

k=x(j) a(k,j)
0 . The last product is equal to

fi,j/ fx(j),j because a(k,j)
0 = fk+1,j/ fk,j from (2.2) and (2.4).

Theorem 2 admits a combinatorial interpretation of the determinant τ
(s,t)
n by means

of Gessel–Viennot–Lindström’s method [2, 7]. For (s, t) ∈ L and n ≥ 0 we define
LP(L, s, t, n) to be the set of n-tuples (P0, . . . , Pn−1) of lattice paths on L such that (i) Pk
goes from (s + k, y(s) + k) to (x(t) + k, t + k) for each 0 ≤ k < n, and (ii) P0, . . . , Pn−1 are
non-intersecting: Pj ∩ Pk = ∅ if j 6= k. See Figure 4 where the second figure shows such
an n-tuple of non-intersecting lattice paths.

Theorem 4. Let a(s,t)
n 6= 0, b(s,t)

n 6= 0 be a solution to the discrete 2D Toda molecule (2.1).
Assume that a function f = fi,j on Z2 gives the same solution through (2.2) with (2.4). Let L be
a regular subset of Z2. Then for any (s, t) ∈ L and n ≥ 0,

τ
(s,t)
n

τ
(x(t),t)
n

= ∑
(P0,...,Pn−1)∈LP(L,s,t,n)

n−1

∏
k=0

w(L; a, b; Pk) (3.4)

where τ
(s,t)
n = det0≤i,j<n( fs+i,t+j).

Proof. Gessel–Viennot–Lindström’s method implies from Theorem 2 that

τ
(s,t)
n

∏n−1
k=0 fx(t+k),t+k

= ∑
(P′0,...,P′n−1)

n−1

∏
k=0

w(L; a, b; P′k) (3.5)

where the sum ranges over all n-tuples (P′0, . . . , P′n−1) of non-intersecting lattice paths on
L such that P′k goes from (s + k, y(s + k)) to (x(t + k), t + k) for each 0 ≤ k < n. Elimi-
nating the steps frozen due to the non-intersecting condition we obtain (P0, . . . , Pn−1) ∈
LP(L, s, t, n), see Figure 4 for example. The weight of the eliminated frozen steps is
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P′0
P′1

P′2
P′3

τ
(s,t)
n / ∏n−1

k=0 fx(t+k),t+k

P0
P1

P2
P3

LP(L, s, t, n) τ
(x(t),t)
n / ∏n−1

k=0 fx(t+k),t+k

Figure 4: Proof of Theorem 4 where (s, t) = (5, 4) and n = 4. In the first figure the
steps in orange are frozen due to the non-intersecting condition.

equal to the weight of the unique configuration of non-intersecting lattice paths counted
in τ

(x(t),t)
n / ∏n−1

k=0 fx(t+k),t+k, see the last figure in Figure 4 for example. Thus τ
(s,t)
n is equal

to the right-hand side of (3.4) multiplied by τ
(x(t),t)
n .

Note that the left-hand side of (3.4) can be expressed as

τ
(s,t)
n

τ
(x(t),t)
n

=
s−x(t)
∏
i=1

n

∏
k=1

a(s−i,t)
k−1 (3.6)

from (2.2). We can readily evaluate the sum in (3.4), a partition function for non-
intersecting lattice paths, by using this formula.

4 A multiplicative partition function for reverse plane par-
titions

Let λ be a partition and let n ≥ 0. We write RPP(λ, n) for the set of reverse plane
partitions of shape λ with parts at most n. Let r and c denote the numbers of rows and
columns in λ respectively. We then define a regular subset L(λ) of Z2 by

L(λ) = {(i, j) ∈ Z2
≥0; j ≥ c− λr−i} (4.1)

where λi denotes the i-th part of λ for 1 ≤ i ≤ r and λi = c for i ≤ 0. There is a bijection
between LP(L(λ), r, c, n) and RPP(λ, n) which is described as follows. Given an n-tuple
(P0, . . . , Pn−1) ∈ LP(L(λ), r, c, n) of non-intersecting lattice paths on L(λ),

(i) move the lattice path Pk northwest by (−k,−k) for each 0 ≤ k < n;
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1:1←→

00
0

112
2

2
2

3

3

4
4 4 4

4
1:1←→

0 0
0

1 1 2
2

2
2

3

3

4
4 4 4
4

Figure 5: The bijection between LP(L(λ), r, c, n) and RPP(λ, n) where λ = (5, 4, 4, 2, 1)
with r = 5 rows and c = 5 columns, and n = 4.

(ii) fill in the cells between Pn−k−1 and Pn−k with k for each 0 ≤ k ≤ n where P−1 is the
lattice path going from (r, 0) to (0, c) along the border of L(λ) and Pn is that going
east from (r, 0), turning north at (r, c) and going north to (0, c);

(iii) rotate 180◦ to obtain a reverse plane partition in RPP(λ, n).

Figure 5 demonstrates the bijection by an example. This bijection is essentially the same
as the classical interpretation of plane partitions by “zig-zag” non-intersecting paths [6].

We set up weight for reverse plane partitions which is equivalent to the weight for
lattice paths defined in Section 3. Let λ′ = (λ′1, . . . , λ′c) denote the partition conjugate
with λ. We define αi,j by

αi+k,λi+k = a(r−i,c−λi)
n−k−1 , αλ′j+k,j+k−1 = b

(r−λ′j,c−j)
n−k (4.2)

for 1 ≤ i ≤ r, 1 ≤ j ≤ c and k < n where a(s,t)
n 6= 0, b(s,t)

n 6= 0 is a solution to the discrete
2D Toda molecule (2.1). We then define the weight of a reverse plane partition π by

v(λ, n; a, b; π) = ∏
(i,j)∈λ

πi,j

∏
k=1

αi+k−1,j+k−2

αi+k−1,j+k−1
. (4.3)

Lemma 5. Let λ be a partition with r rows and c columns, and let n ≥ 0. Assume that
π ∈ RPP(λ, n) and (P0, . . . , Pn−1) ∈ LP(L(λ), r, c, n) correspond to each other by the bijection.
Then

v(λ, n; a, b; π) =
∏n−1

k=0 w(L(λ); a, b; Pk)

∏r
i=1 ∏n

k=1 a(r−i,c−λi)
k−1

. (4.4)

Sketch of proof. Actually αi,j is defined so that v(π) = v(λ, n; a, b; π) is proportional to
∏n−1

k=0 w(Pk) with w(P) = w(L(λ); a, b; P). That is, there exists a constant κ such that
v(π) = κ ∏n−1

k=0 w(Pk). From (4.3), v(λ, n; a, b; π∅) = 1 for the empty reverse plane
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partition π∅ ∈ RPP(λ, n) whose parts are all 0. Thus κ−1 = ∏n−1
k=0 w(P∅

k ) where
(P∅

0 , . . . , P∅
n−1) ∈ LP(L(λ), r, c, n) corresponds to π∅ by the bijection. We observe that

P∅
0 goes from (r, 0) to (0, c) along the border of L(λ), and P∅

1 , . . . , P∅
n−1 are copies of

P∅
0 . Here w(P∅

k ) = ∏r
i=1 a(r−i,c−λi)

k and hence κ−1 is equal to the denominator of the
right-hand side of (4.4).

The main theorem of this paper is the following.

Theorem 6. Let a(s,t)
n 6= 0, b(s,t)

n 6= 0 be a solution to the discrete 2D Toda molecule (2.1). Let λ

be a partition with r rows and c columns, and let n ≥ 0. Then

∑
π∈RPP(λ,n)

v(λ, n; a, b; π) =
r

∏
i=1

n

∏
k=1

a(r−i,c)
k−1

a(r−i,c−λi)
k−1

. (4.5)

Proof. This theorem is a translation of Theorem 4 via the bijection with the help of (3.6)
and Lemma 5. Note that x(c) = 0 for the case of the regular subset L(λ).

Theorem 6 allows us to find a multiplicative partition function for reverse plane
partitions of arbitrary shape with bounded parts from each non-vanishing solution to
the discrete 2D Toda molecule (2.1).

5 An example

The discrete 2D Toda molecule (2.1) has the solution

a(s,t)
n = [p]s+n

s+1(1− a[p]s1[q]
t+n
1 ), (5.1a)

b(s,t)
n = a[p]s+n−1

1 [q]t1(1− [q]t+n
t+1) (5.1b)

with the notation that [z]nm = ∏n
`=m z` if m ≤ n, [z]nm = 1 if m = n + 1 and [z]nm =

∏m−1
`=n+1 z−1

` if m ≥ n + 2. The solution involves indeterminates a and p`, q` for ` ∈ Z as
parameters.

Let λ be a partition with r rows and c columns. Assume that

a = [x]λr−r
c−λ′c

, pi = [x]λr−i−r+i
λr−i+1−r+i, qj = [x]

c−j−λ′c−j+1

c−j−λ′c−j
(5.2)

The solution (5.1) then turns into

a(s,t)
n = [x]λr−s−n−r+s+n

λr−s−r+s+1 (1− [x]λr−s−r+s
c−t−n−λ′c−t−n

), (5.3a)

b(s,t)
n = [x]λr−s−n+1−r+s+n−1

c−t−λ′c−t
(1− [x]c−t−1−λ′c−t

c−t−n−λ′c−t−n
). (5.3b)
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Let n ≥ 0. The solution (5.3) yields the weight of (4.3) with (4.2) given by

v(λ, n; a, b; π) =
c−1

∏
`=1−r

xtr`(π)
` ∏

(i,j)∈λ

πi,j

∏
k=1

1− [x]j−i−1
−n+j+k−1−λ′−n+j+k−1

1− [x]j−i
−n+j+k+λ′−n+j+k

. (5.4)

As an instance of Theorem 6 we obtain the following multiplicative partition function
for reverse plane partitions.

Theorem 7. Let λ be a partition with r rows and c columns, and let n ≥ 0. Then

∑
π∈RPP(λ,n)

v(λ, n; a, b; π) = ∏
(i,j)∈λ

1− [x]λi−i
−n+j−λ′−n+j

1− [x]λi−i
j−λ′j

(5.5)

where the weight v(λ, n; a, b; π) is given by (5.4).

Proof. Substituting the solution (5.3) for the right-hand side of (4.5) we get

r

∏
i=1

n

∏
k=1

1− [x]λi−i
−k+1−λ′−k+1

1− [x]λi−i
−k+1+λi−λ′−k+1+λi

=
r

∏
i=1

λi

∏
j=1

n

∏
k=1

1− [x]λi−i
j−k−λ′j−k

1− [x]λi−i
j−k+1−λ′j−k+1

(5.6a)

=
r

∏
i=1

λi

∏
j=1

1− [x]λi−i
−n+j−λ′−n+j

1− [x]λi−i
j−λ′j

. (5.6b)

The last product is the same as the right-hand side of (5.5).

The multiplicative partition function in Theorem 7 generalizes the multi-trace gen-
erating function (1.2) by Gansner. Indeed (5.5) reduces into (1.2) as n → ∞ because
limn→∞[x]const.

−n+const. = 1 as formal power series, limn→∞ λ′−n = r and limn→∞ v(λ, n; a, b; π)

= ∏c−1
`=1−r xtr`(π)

` .
Assuming x` = q for all ` ∈ Z we obtain the partition function

∑
π∈RPP(λ,n)

v(λ, n; a, b; π) = ∏
(i,j)∈λ

1− qλi+λ′j−n−i−j+n+1

1− qλi+λ′j−i−j+1
with (5.7a)

v(λ, n; a, b; π) = q|π| ∏
(i,j)∈λ

πi,j

∏
k=1

1− qn−i−k+1+λ′−n+j+k−1

1− qn−i−k+1+λ′−n+j+k
(5.7b)

from (5.4) and (5.5). If λ = (cr), an r × c rectangular shape, that becomes the product
formula (1.1) by MacMahon. The partition function (5.7) is thus regarded as a general-
ization of (1.1) for reverse plane partitions of arbitrary shape.



12 Shuhei Kamioka

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP16K05058.

References

[1] E. R. Gansner. “The Hillman-Grassl correspondence and the enumeration of reverse plane
partitions”. J. Combin. Theory Ser. A 30 (1981), pp. 71–89. DOI.

[2] I. Gessel and G. Viennot. “Binomial determinants, paths, and hook length formulae”. Adv.
Math. 58 (1985), pp. 300–321. DOI.

[3] R. Hirota, S. Tsujimoto, and T. Imai. “Difference scheme of soliton equations”. Future Di-
rections of Nonlinear Dynamics in Physical and Biological Systems. NATO ASI Series, Vol. 312.
Springer, 1993, pp. 7–15. DOI.

[4] S. Kamioka. “Plane partitions with bounded size of parts and biorthogonal polynomials”.
2015. arXiv:1508.01674.

[5] S. Kamioka. “A triple product formula for plane partitions derived from biorthogonal poly-
nomials”. 28th International Conference on Formal Power Series and Algebraic Combinatorics.
DMTCS Proceedings, 2016, pp. 671–682. URL.

[6] C. Krattenthaler. “Plane partitions in the work of Richard Stanley and his school”. The
Mathematical Legacy of Richard P. Stanley. P. Hersh, T. Lam, P. Pylyavskyy, V. Reiner (eds.),
Amer. Math. Soc., R.I., 2016, pp. 246–277. arXiv:1503.05934.

[7] B. Lindström. “On the vector representations of induced matroids”. Bull. London Math. Soc.
5 (1973), pp. 85–90. DOI.

[8] P. A. MacMahon. Combinatory Analysis. Vol. 2. Cambridge University Press, 1916.

[9] K. Maeda, H. Miki, and S. Tsujimoto. “From orthogonal polynomials to integrable sys-
tems”. Trans. Jpn. Soc. Ind. Appl. Math. 23 (2013), pp. 341–380.

[10] S. Okada. “(q, t)-Deformations of multivariate hook product formulae”. J. Algebr. Comb. 32
(2010), pp. 399–416. DOI.

[11] R. P. Stanley. “The conjugate trace and trace of a plane partition”. J. Combin. Theory Ser. A
14 (1973), pp. 53–65. DOI.

[12] X. G. Viennot. “A combinatorial interpretation of the quotient-difference algorithm”. 12th
International Conference on Formal Power Series and Algebraic Combinatorics. Springer Berlin
Heidelberg, 2000, pp. 379–390. DOI.

https://doi.org/10.1016/0097-3165(81)90041-8
https://doi.org/10.1016/0001-8708(85)90121-5
https://doi.org/10.1007/978-1-4899-1609-9_2
https://arxiv.org/abs/1508.01674
https://fpsac2016.sciencesconf.org/114060
https://arxiv.org/abs/1503.05934
https://doi.org/10.1112/blms/5.1.85
https://doi.org/10.1007/s10801-010-0221-0
https://doi.org/10.1016/0097-3165(73)90063-0
https://doi.org/10.1007/978-3-662-04166-6_34

	Introduction
	Solutions to the discrete 2D Toda molecule
	Lattice path combinatorics
	A multiplicative partition function for reverse plane partitions
	An example

